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Abstract
The Bethe ansatz in its several formulations is a common tool for the exact
solution of one-dimensional quantum Hamiltonians. This ansatz asserts that
several eigenfunctions of the Hamiltonians are given in terms of a sum of
permutations of plane waves. We present results that induce us to expect that,
alternatively, the eigenfunctions of all the exact integrable quantum chains can
also be expressed by a matrix product ansatz. In this ansatz several components
of the eigenfunctions are obtained through the algebraic properties of properly
defined matrices. This ansatz allows an unified formulation of several exact
integrable Hamiltonians. We show how to formulate this ansatz for a large
family of quantum chains such as the anisotropic Heisenberg model, Fateev–
Zamolodchikov model, Izergin–Korepin model, Sutherland model, t–J model,
Hubbard model, etc.

PACS numbers: 03.65.Bz, 03.67.−a, 05.20.−y, 05.30.−d

Since the pioneering work of Bethe in 1931 [1] the Bethe ansatz and its generalizations have
proved to be quite an efficient tool in the description of the eigenvectors of a large variety of
one-dimensional quantum chains and two-dimensional transfer matrices (see, e.g., [2–5] for
reviews). On the other hand, in the last two decades [6–9] it has been shown that some special
quantum chains, although not integrable through the Bethe ansatz, have the components of
their ground-state wavefunctions given in terms of a product of matrices. In this matrix
product ansatz (MPA), apart from a normalization constant, these components are fixed by the
algebraic properties of the matrices defining the MPA. In another context an MPA has also
been applied quite successfully to the evaluation of the stationary distribution of probabilities
of some stochastic models in one dimension [10]. The time fluctuations of these stochastic
models are described by the ground-state wavefunction of a related spin Hamiltonian. The
simplest example is the one-dimensional asymmetric exclusion process [10] whose related spin
Hamiltonian is the anisotropic Heisenberg chain, or XXZ chain, with appropriate boundary
fields [11]. The stationary properties of the model are given in terms of the algebraic relations
of the matrices appearing on the MPA. This ansatz was used in a variety of problems including
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interface growth [12], boundary induced phase transitions [10, 13–15], the dynamics of shocks
[16] or traffic flow [17].

An important development of the MPA that appeared in the context of stochastic models
is the dynamical matrix product ansatz (DMPA) [18, 19]. This ansatz allows, whenever it is
valid, the calculation of the probability densities of the stochastic system at arbitrary times. In
the related spin Hamiltonian this DMPA asserts that not only the ground-state wavefunction,
as in the standard MPA, but also an arbitrary wavefunction has components expressed in terms
of a matrix product ansatz whose matrices, in distinction from the standard MPA, are now
time dependent. This DMPA was shown originally [18, 20] to be valid for the problem of
asymmetric diffusion of particles on the lattice. More recently [21] (see also [22]) it was
also shown that this DMPA can also be formulated in the context of stochastic models with
two species of hard-core particles. The condition of validity of the DMPA reproduces the
subspace of parameters where the model is known to be exactly integrable. This fact induced
us to conjecture that all Hamiltonians, whether or not related to stochastic models, which
are solvable through the Bethe ansatz may also be solvable by an appropriate MPA. This
would mean that the components of the eigenfunctions of the exact integrable models, which
according to the Bethe ansatz are normally given by a combination of plane waves, can also
be obtained from the algebraic properties of the matrices defining the MPA.

In this letter, we are going to show how the eigenspectra of the exact integrable quantum
chains, with global conservation laws, can be obtained by an appropriate matrix-product
ansatz. In this way we were able to obtain the integrability of several well known exact
integrable models. Among the models with one global conservation law we have the XXZ
chain [23], the spin-S Fateev–Zamolodchikov model [24], the Izergin–Korepin model [25], the
solvable spin-1 model of [26], etc, and among the models with two global conservations we
have the supersymmetric t–J model [27], the spin-1 Sutherland and Perk–Schultz models [28,
29], the Hubbard model [30], as well the two-parameter integrable model presented in [33].
Moreover the matrix-product ansatz we propose enable us to show, with little effort, how to
extend the above-mentioned models by including an arbitrary range of hard-core interactions
without losing their exact integrability.

For brevity and in order to illustrate the proposed MPA we are going to present here two
examples: the solution of the XXZ chain with arbitrary hard-core interactions among the up
spins as an example of a model with one global conservation law, and the solution of the
Hubbard model as an example of a model with two global conservations laws.

The Hamiltonian of the XXZ chain with a hard-core exclusion of S sites (S = 1, 2, . . .)

is the anisotropic Heisenberg chain (anisotropy �) where any two up spins are not allowed to
occupy lattice sites at distances smaller than S. This Hamiltonian in a L-sites periodic chain is
given by

HS = −PS

L∑
i=1

1

2

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �σz
i σ z

i+s

)
PS +

L�

2
(1)

where σx, σ y, σ z are spin- 1
2 Pauli matrices and PS is a projector that projects out the

configurations where any two up spins are at distances smaller than S. The case S = 1
corresponds to the standard exactly solvable XXZ chain [23]. The conserved charge associated
with the global conservation law of (1) is the z-component of the total magnetization, or
equivalently the number of up spins (particles). The translation invariance of the lattice also
ensures that the momentum is also a good quantum number.

The ansatz we propose states that any of the wavefunctions |ψn,P 〉 in the sector with n
spins up (n = 0, 1, 2, . . .) and momentum P = 2πl

L
(l = 0, 1, 2, . . . , L − 1) is given by a
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matrix product ansatz, i.e., their amplitudes are given by the trace of the matrix product:

|ψn,P 〉 =
∗∑

x1,...,xn

Tr(Ex1−1AEx2−x1−1A · · · Exn−xn−1−1AEL−xn�P )|x1, . . . , xn〉 (2)

where |x1, . . . , xn〉 denotes the configurations with up spins at (x1, . . . , xn) and the symbol (∗)
in the sum means the restriction to the configurations where |xi+1 − xi | � S. The algebraic
properties of the matrices A,E and �P will be fixed by the eigenvalue equation

HS |ψn,P 〉 = εn|ψn,P 〉. (3)

The algebraic relations of the matrices A and E with �P will fix the momentum of the
eigenfunction. The fact that |ψn,P 〉 has a momentum P implies that the ratio of the amplitudes
corresponding to configurations |x1, . . . , xn〉 and |x1 + 1, . . . , xn + 1〉 is e−iP and consequently
from 2 we have the following relations:

A�P = e−iP �P A E�P = e−iP �P E. (4)

The eigenvalue equation (3) when applied to the components of |ψn,P 〉 where all the up spins
are at distances larger than S gives us the constraint

εnTr(Ex1−1AEx2−x1−1 · · · AExj −xj−1−1AExj+1−xj −1A · · · AEL−Xn�P )

=
n∑

i=1

[Tr(Ex1−1AEx2−x1−1 · · ·AExi−xi−1−2AExi+1−xi A · · · AEL−Xn�P )

+ Tr(Ex1−1AEx2−x1−1 · · ·AExi−xi−1AExi+1−xi−2A · · · AEL−Xn�P )] (5)

A convenient solution of this last equation is obtained by identifying the matrices A as
composed by n spectral-parameter-dependent matrices

A =
n∑

j=1

Akj
E2−S (6)

where the matrices Akj
obey the commutation relations

EAkj
= eikj Akj

E Akj
�P = e−iP(S−1)�P Akj

(7)

and kj (j = 1, . . . , n) are in general complex numbers unknown a priori. The energy and
momentum are given, respectively, by

εn = −
n∑

j=1

(eikj + e−ikj − 2�) P =
n∑

i=1

kj . (8)

The eigenvalue equation when applied to the other components of |ψn,P 〉 will give the
commutation relations of the matrices {Akj

} among themselves. In fact this algebra is obtained
from the components where any pair of up spins are located at the closest positions (‘matching
conditions’) xj and xj+1 = xj + S, namely

Akj
Akl

= S(kj , kl)Akl
Akj

(j �= l) A2
kj

= 0
(9)

S(kj , kl) = −ei(kj +kl ) + 1 − 2� eikj

ei(kj +kl ) + 1 − 2� eikl
j, l = 1, . . . , n.

These last relations coincide with the Zamolodchikov algebra of creation operators in a (1+1)-
dimensional field theory [31, 32]. No new algebraic relations appear for the matrices Akj

and
the associativity of the algebra (7) and (9) follows from the property S(ki, kj )S(kj , ki) = 1.



L4 Letter to the Editor

The cyclic property of the trace in (2), together with the algebraic relations (9), gives us, for
each kj (j = 1, . . . , n), the conditions

Tr
(
Ak1 · · · Akn

EL−n(S−1)�P

)
= e−ikj (L−nS+n) e−iP(S−1)

(
n∏

l=1

S(kj , kl)

)
Tr

(
Ak1 · · · Akn

EL−n(S−1)�P

)
that fix the up-to-now free complex spectral parameters {kj }

eikj L =
n∏

l=1

S(kj , kl) ei(kj −kl )(S−1) (j = 1, . . . , n). (10)

The wavefunctions, obtained by using (2), (8) and (9), can be written as a combination of
plane waves (‘wave numbers’ {kj }), and apart from a normalization constant coincide with
those obtained by the standard Bethe ansatz [23] for S = 1 or arbitrary values of S [34].

As a second example we consider the standard Hubbard model whose Hamiltonian in a
periodic lattice with L sites is given by

Hh = −t
∑
j,σ

(
c+
j,σ cj+1,σ + c+

j+1,σ cj,σ

)
+ u

∑
j

ηj,−ηj,+ (11)

where c+
j,σ are creation operators of electrons of spin σ = ± at site j , and ηj,σ = ∑

ja c+
j,σ cj,σ

are the number operators of electrons of spin σ at site j . In this case we have two global
conservation laws n±, corresponding to the number of electrons with spin σ = ±, and the
total number of electrons is n = n+ + n−. In order to form our MPA we associate, as before,
the matrix E with the empty sites, the matrices X+, X− with the single occupied sites with
electrons with spin up and down, respectively, and the matrix X0 ≡ X+E−1X− with the
sites with double occupancy. Our MPA asserts that the components of the eigenfunction
|ψn,P 〉 of energy εn and momentum P = 2πl/L (l = 0, 1, . . . , L − 1) corresponding to the
configuration |x1,Q1, . . . , xn,Qn〉 where the non-empty sites (x1, . . . , xn) have occupation
(Q1, . . . ,Qn) (Qi = +,−, 0) will be given by the trace

Tr(Ex1−1XQ1Ex2−x1−1XQ2 · · · XQnEL−xn�P ). (12)

The momentum of the state P, as in (4), is fixed by imposing the commutation relations
XQ�P = e−iP �P XQ(Q = +,−, 0) and E�P = e−iP �P E. The eigenvalue equation
Hh|	n,P 〉 = εn|	n,P 〉 will provide the algebraic relations of the matrices E and XQ.

The components of the wavefunction corresponding to the configurations where all the
particles are at distances |xi+1 − xi | > 1 will give a generalization of (2) whose solution is
obtained by introducing the convenient n spectral-parameter-dependent matrices

XQ =
n∑

j=1

EX
Q
kj

(Q = +,−) (13)

whose commutation relations with the matrices E and �P are

EX
Q
kj

= eikj X
Q
kj

E X
Q
kj

�P = �P X
Q
kj

. (14)

The energy and momentum in terms of these unknown complex spectral parameters are given,
as in (8), by

εn = −
n∑

j=1

(eikj + e−ikj ) P =
n∑

j=1

kj . (15)



Letter to the Editor L5

The components where the particles occupy the closest positions and those where we have
double occupancy give us by using (14) and (15) the algebraic relations

X
Q
kl

X
Q
kj

= S
QQ
QQ(kl, kj )X

Q
kj

X
Q
kl

(
X

Q
kj

)2 = 0

X
Q
kl

X
Q′
kj

= S
QQ′
QQ′ (kl, kj )X

Q′
kj

X
Q
kl

+ S
QQ′
Q′Q(kl, kj )X

Q
kj

X
Q′
kl

S
QQ
QQ = −1 S

QQ′
Q′Q(kl, kj ) = −u ei(kl+kj )/α (16)

S
Q′Q
QQ′ (kl, kj ) = t (eikl − eikj )(1 + ei(kl+kj ))/α

α = u ei(kl+kj ) + t (1 + ei(kl+kj ))(eikl − eikj )

where Q′ = −Q and Q = ±. Relations (14) and (16) define completely the algebra whose
structural constants are the well-known S-matrix of the Hubbard model [30]. Since the
several components of the wavefunction should be uniquely related, the above algebra should
be associative. This associativity implies that the above S-matrix should satisfy the Yang–
Baxter relations [35, 2], which is indeed the case [30]. The components of the wavefunction
corresponding to the configurations where we have three or four particles in next-neigbouring
sites would give in principle new relations involving three or four operators X

Q
kj

. These new
relations are however consequences of the above relations (14) and (16). The cyclic property
of the trace in (12) and the algebraic relations (14) and (16) will imply

Tr
(
X

Q1
k1

· · · XQj−1

kj−1
X

Qj

kj
· · · XQn

kn
EL�P

)
= (−1)n eikj L

∑
Q′

1,...,Q
′
n

T ({Q}, {Q′}) Tr
(
X

Q′
1

k1
· · · XQ′

n

kn
EL�P

)
(17)

where

T ({Q}, {Q′}) =
∑

Q′′
1 ,...,Q

′′
n

n∏
i=1

S
Qi,Q

′′
i+1

Q′
i ,Q

′′
i

(ki, kj ) (18)

is the transfer matrix of a non-homogeneous six-vertex model defined on a cylinder of perimeter
n and with Boltzmann weights given by the S-matrices defined in (16). The eigenvalues of
this auxiliary problem �n(ki; k1, . . . , kn) can be obtained in a standard way by the coordinate-
Bethe ansatz [23] or by the quantum inverse scattering method [36]. Using these eigenvalues
in relation (17) the spectral parameters {kj } will be fixed by the solutions of the system of
equations

e−ikj L = (−1)n�n(kj ; k1, . . . , kn) (j = 1, . . . , n). (19)

These last equations coincide with the Bethe ansatz equations derived through the standard
coordinate Bethe ansatz [30].

Generalizations of our MPA are quite simple to implement (a detailed version of this
letter containing several generalizations will be presented elsewhere [37]). For example, the
solution of the excluded volume Hubbard model where electrons with spin up (down) exclude
other electrons at S+ (S−) sites on its right, but allow double occupancy at any site, is just
obtained by changing in (13) XQ = ∑

j ESQ+1X
Q
kj

(Q = ±).
We have also shown [37] that the above MPA also works for the other known exactly

integrable models with two conserved global quantities (U(1) ⊗ U(1)), like the Essler–
Korepin–Schoutens model [38] or the generalized two-parameter integrable model introduced
in [33]. In those last cases the same MPA presented above for the Hubbard model apply except
that now the matrices X0 associated with the sites with double occupancy are given in terms of
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new operators X0 = Y +E−1Y−, and we were able to rederive all the results obtained for these
models through the standard Bethe ansatz. Hamiltonians with two global conservations that
do not allow double occupancy like the stochastic Hamiltonian associated with the asymmetric
diffusion with two kinds of particles [34], or the supersymmetric t–J quantum chain [27] or
the SU(3) Sutherland and Perk–Schultz models [28, 29], are obtained through the MPA (12),
without the matrices X0.

Models of spin-1 with a single global conservation law (conservation of the
z-magnetization) such as the Fateev–Zamolodchikov model [24], the Izergin–Korepin model
[25], or the solvable spin-1 Hamiltonian introduced in [33], have their solutions given by a
MPA similar [37] in (2), where now to that we associate the matrices E,A and BE−1B with
the sites occupied by particles with spin Sz = −1, 0 or +1, respectively.

We have also obtained [37] an appropriate extension of the presented MPA to non-periodic,
but exact integrable boundaries such as, for example, the XXZ chain with surface fields.

It is interesting to note that in the cases of exact integrable Hamiltonians associated with
stochastic models, as in [11, 19], since we can write all eigenfunctions in a MPA, our results
imply that we can equivalently write at any time the probability distribution of the model in
terms of a time-dependent MPA, as happens in the DMPA [18].

In conclusion, we have shown that the eigenfunctions of a large variety of exact integrable
quantum chains can be expressed in an unified way in terms of a matrix product ansatz, whose
matrices satisfy an associative algebra. The associativity of the algebra that warrants the
exact integrability of the model is a consequence of the Yang–Baxter relations. Our results
indicate that all the exact solutions obtained through the coordinate Bethe ansatz can also be
obtained through the present MPA. Conversely, all the new exact solutions obtained by this
MPA probably can also be formulated by a suitable coordinate Bethe ansatz. The advantages
of the present MPA in the search for new exact integrable models remain its simplicity and
unifying implementation for arbitrary systems. For example, the MPA solution for integrable
quantum chains with exclusion effects is quite simple. Even in the cases where more than one
conservation law exists the MPA gives us an S-matrix independent of the excluded volume
[37], in contrast to the standard Bethe ansatz where the S-matrix depends on the range of
exclusion of particles [39].
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